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Minimum Width for Universal Approximation using RELU Networks on Compact Domain

TL;DR. We find the exact minimum width and the lower bound for universal approximation using RELU networks on compact domain.

Motivation

Universal Approximation (UA). For any continuous function f* and error
e > 0, we want to find a neural network f such that

distance(f™, f) < e.

e Two popular choices for distance:

LP distance : || f* — f||,, Uniform distance : sup || f*(z) — f(2)]|co-

X

Classical Results. Mainly focus on shallow and wide networks.

Theorem ([Hornik+89; Cybenko89; Leshno+93; Pinkus99]). Two-
layer neural networks with a non-polynomial activation function are
universal approximators in both L? and uniform distance.

e Namely, the minimum depth for universal approximation is exactly two.

e The universal approximation property of deep and narrow networks
has been studied as a dual problem.

Problem. The minimum width enabling universal approximation?

Summary of Bounds on Minimum Width

Ref. Distance Function class Activation ¢ | Exact minimum width
Park+21 Lr C(R% R%) RELU Wmin = Max{d, + 1,d,}
Cai23 Lr C([0,1]% R%)  Leaky-RELU Wmin = Mmax{dy,d,,2}

Thm. 1. LP C([0,1]% ,R%) RELU Winin = max{d,,d,,2}
Thm. 2. LP C([0,1]% R%) RELU-LIKE' | wuyi, = max{d,,d,,2}
t is an activation function similar to RELU such as Leaky-RELU, GELU, and MISH.
Ref. Distance Function class Activation o Lower bound
Park+21 | Uniform C([0,1],R?) RELU Wmin > 2 = max{d, +1,d,}
Cai23 Uniform C([0,1], R?) Leaky-RELU | wpin > 2 = max{d, + 1,d,}
Thm. 3. | Uniform  C([0,1]% R%) Conti. monotone Whntn = @y g e, <54,

Contributions.

e Theorem 1. For L” distance and RELU networks on compact
domain, wy,;, = max{d,, d,, 2} for UA.

— This shows a dichotomy between bounded and unbounded do-
mains: wy,;, = max{d,+1,d,} when the domain is unbounded.

e Theorem 2. w,,;, = max{d,,d,,2} for the networks using any of
RELU-LIKE activation functions, which generalizes the previous
result for Leaky-RELU networks.

e Theorem 3. For uniform distance and networks using continuous
monotone activation function (e.g., RELU, Leaky-RELU) w;, >

d, + 1ifd, < d, < 2d,.

— This generalizes the previous result: wy,;, > d, + 1 for RELU
networks if d, = 1 and d,, = 2.

Proof Sketch: Achieving Exact Minimum Widths

ldea. Given a partition {S1, ..., Sk} of the domain with diam(S;) is small,
map almost all of each §; (i.e., 7; below) to an approximate target vector.
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Encoder. Our encoder iteratively maps 74, . . ., 7, to distinct scalar values
using width max{d,, 2} RELU networks, using Lemma 1.

Lemma 1. For any d, € N, a compact set £ C R%, q,c € R%
suchthata'c > 0, and b € R, there exists a two-layer RELU network
f: K — RY of width d,, such that

7 ifa'x+b>0

f(x):<x “;?ngxc ifa'z +b<0°

e Using a RELU network of width d,, preserve the points in the half-
space HT = {z € R% : a'x + b > 0} and project points not in H ™ to
the boundary along the direction c.
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Decoder. Our decoder maps each scaler value generated by the encoder

to an approximate target vector, which can be implemented by a RELU
network of width max{d,,2}.

e Overall, for L? distance and RELU networks on compact domain,
Wpin < maxi{d,,d,,2} for UA.

Matching lower bound. w,,;,, > max{d,,d,, 2} is rather straightforward.

o Width either d, — 1 or d,, — 1: lose input/output information.

e Width 1: cannot approximate non-monotonic function.

RELU-LIKE activation functions. RELU can be approximated by a width
1 network using any of RELU-LIKE activation functions.

e Thus, our proof techniques can be generalized to networks using any
of RELU-LIKE activation functions; w,;, = max{d,, d,, 2} for UA.

Proof Sketch: Lower Bound on Minimum Width

We assume our activation function ¢ is a continuous injection; this easily
generalizes to continuous monotone functions.

Proof by Contradiction. Our counterexample f* :

defined as follows:
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For r = dy — daj, €T = (513’1, C ,CIZ’dx) - [O, 1]dx, Dl — [O, 1/3]dx, and DQ —
2/3,1]" x {1},

(1 — 62,1 —6x9,...,1 —624,,0,...,0) ifxeD
f*(r)=<(0,...,0,60; — 5,625 —5,...,6x, —5) if v € Dy .
g* () otherwise

where g* iIs some continuous function that makes f* continuous.

Network f Approximating f*. Suppose for a contradiction that there is
a o network f of width d, such that || f* — f||o is small enough.

e Since y is injective, f is also an injection, i.e., f(D;) N f(D,) = 0.
However, such f cannot be injective based on the topological argument.

Minimum Width for Recurrent Neural Networks

Our encoder & decoder can also be applied to recurrent neural networks
and bidirectional recurrent neural networks.

Activation ¢ | Upper / lower bounds

RELU

RELU-LIKE

RELU
RELU-LIKE

t consists of all continuous functions with length 7" from [0, 1]% to R%.
I are past-dependent; the t-th output is a function of the first to t-th inputs.

Networks | Distance Function class

Wmin = max{d,,d,, 2}
Wmin = Mmax{dy,d,, 2}
Win < Mmax{d,,d,,2}
Wmin < max{dy,d,,2}

RNN LP C([O, 1]dx><T’Rdy><T)T,;t

BRNN LP C([0, 1]%>T R >1)T

e RNNSs. For L? distance, wy,, = max{d,,d,, 2} for UA.
e BRNNSs. For L? distance, wy, < max{d,,d,,2} for UA.



