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TL;DR. We find the exact minimum width and the lower bound for universal approximation using RELU networks on compact domain.

Motivation

Universal Approximation (UA). For any continuous function f ∗ and error
ε > 0, we want to find a neural network f such that

distance(f ∗, f) ≤ ε.

• Two popular choices for distance:

Lp distance : ∥f ∗ − f∥p, Uniform distance : sup
x

∥f ∗(x)− f(x)∥∞.

Classical Results. Mainly focus on shallow and wide networks.

Theorem ([Hornik+89; Cybenko89; Leshno+93; Pinkus99]). Two-
layer neural networks with a non-polynomial activation function are
universal approximators in both Lp and uniform distance.

• Namely, the minimum depth for universal approximation is exactly two.

• The universal approximation property of deep and narrow networks
has been studied as a dual problem.

Problem. The minimum width enabling universal approximation?

Summary of Bounds on Minimum Width

Ref. Distance Function class Activation σ Exact minimum width
Park+21 Lp C(Rdx ,Rdy ) ReLU wmin = max{dx + 1, dy}

Cai23 Lp C([0, 1]dx ,Rdy ) Leaky-ReLU wmin = max{dx, dy, 2}
Thm. 1. Lp C([0, 1]dx ,Rdy ) ReLU wmin = max{dx, dy, 2}
Thm. 2. Lp C([0, 1]dx ,Rdy ) ReLU-Like† wmin = max{dx, dy, 2}

‡ is an activation function similar to ReLU such as Leaky-ReLU, GELU, and Mish.

Ref. Distance Function class Activation σ Lower bound
Park+21 Uniform C([0, 1],R2) ReLU wmin > 2 = max{dx + 1, dy}

Cai23 Uniform C([0, 1],R2) Leaky-ReLU wmin > 2 = max{dx + 1, dy}
Thm. 3. Uniform C([0, 1]dx ,Rdy ) Conti. monotone wmin ≥ dy + 1dx<dy≤2dx

Contributions.

• Theorem 1. For Lp distance and RELU networks on compact
domain, wmin = max{dx, dy, 2} for UA.
– This shows a dichotomy between bounded and unbounded do-

mains: wmin = max{dx+1, dy} when the domain is unbounded.

• Theorem 2. wmin = max{dx, dy, 2} for the networks using any of
RELU-LIKE activation functions, which generalizes the previous
result for Leaky-RELU networks.

• Theorem 3. For uniform distance and networks using continuous
monotone activation function (e.g., RELU, Leaky-RELU) wmin ≥
dy + 1 if dx < dy ≤ 2dx.
– This generalizes the previous result: wmin ≥ dy + 1 for RELU

networks if dx = 1 and dy = 2.

Proof Sketch: Achieving Exact Minimum Widths

Idea. Given a partition {S1, . . . ,Sk} of the domain with diam(Si) is small,
map almost all of each Si (i.e., Ti below) to an approximate target vector.

Encoder. Our encoder iteratively maps T1, . . . , Tk to distinct scalar values
using width max{dx, 2} RELU networks, using Lemma 1.

Lemma 1. For any dx ∈ N, a compact set K ⊂ Rdx , a, c ∈ Rdx

such that a⊤c > 0, and b ∈ R, there exists a two-layer RELU network
f : K → Rd

x of width dx such that

f(x) =

{
x if a⊤x+ b ≥ 0

x− a⊤x+b
a⊤c

× c if a⊤x+ b < 0
.

• Using a RELU network of width dx, preserve the points in the half-
space H+ = {x ∈ Rdx : a⊤x + b ≥ 0} and project points not in H+ to
the boundary along the direction c.

Decoder. Our decoder maps each scaler value generated by the encoder
to an approximate target vector, which can be implemented by a RELU
network of width max{dy, 2}.

• Overall, for Lp distance and RELU networks on compact domain,
wmin ≤ max{dx, dy, 2} for UA.

Matching lower bound. wmin ≥ max{dx, dy, 2} is rather straightforward.

• Width either dx − 1 or dy − 1: lose input/output information.

• Width 1: cannot approximate non-monotonic function.

RELU-LIKE activation functions. RELU can be approximated by a width
1 network using any of RELU-LIKE activation functions.
• Thus, our proof techniques can be generalized to networks using any

of RELU-LIKE activation functions; wmin = max{dx, dy, 2} for UA.

Proof Sketch: Lower Bound on Minimum Width

We assume our activation function σ is a continuous injection; this easily
generalizes to continuous monotone functions.
Proof by Contradiction. Our counterexample f ∗ : [0, 1]dx → Rdy is
defined as follows:

For r = dy − dx, x = (x1, . . . , xdx) ∈ [0, 1]dx , D1 = [0, 1/3]dx , and D2 =
[2/3, 1]r × {1}dx−r,

f ∗(x) =

(1− 6x1, 1− 6x2, . . . , 1− 6xdx , 0, . . . , 0) if x ∈ D1

(0, . . . , 0, 6x1 − 5, 6x2 − 5, . . . , 6xr − 5) if x ∈ D2

g∗(x) otherwise
,

where g∗ is some continuous function that makes f ∗ continuous.

Network f Approximating f ∗. Suppose for a contradiction that there is
a σ network f of width dy such that ∥f ∗ − f∥∞ is small enough.

• Since φ is injective, f is also an injection, i.e., f(D1) ∩ f(D2) = ∅.
However, such f cannot be injective based on the topological argument.

Minimum Width for Recurrent Neural Networks

Our encoder & decoder can also be applied to recurrent neural networks
and bidirectional recurrent neural networks.

Networks Distance Function class Activation σ Upper / lower bounds
ReLU wmin = max{dx, dy, 2}RNN Lp C([0, 1]dx×T ,Rdy×T )†,‡

ReLU-Like wmin = max{dx, dy, 2}
ReLU wmin ≤ max{dx, dy, 2}BRNN Lp C([0, 1]dx×T ,Rdy×T )†

ReLU-Like wmin ≤ max{dx, dy, 2}

† consists of all continuous functions with length T from [0, 1]dx to Rdy .
‡ are past-dependent ; the t-th output is a function of the first to t-th inputs.

• RNNs. For Lp distance, wmin = max{dx, dy, 2} for UA.
• BRNNs. For Lp distance, wmin ≤ max{dx, dy, 2} for UA.


