Minimum Width for Universal Approximation using ReLU Networks on Compact Domain

Namjun Kim¹ Chanho Min² Sejun Park¹

¹Korea University ²Ajou University

ICLR 2024

• Neural networks are universal approximators if

For any continuous f^* , for any $\varepsilon > 0$, there exists a neural network f such that

distance (target f^* , NN f) $\leq \varepsilon$

• Neural networks are universal approximators if

For any continuous f^* , for any $\varepsilon > 0$, there exists a neural network f such that

distance (target f^* , NN f) $\leq \varepsilon$

• Popular distances:

 $L^{p} \text{ distance} \qquad \qquad \text{Uniform distance} \\ \|f^{*} - f\|_{p} := (\int \|f^{*}(x) - f(x)\|_{p}^{p} dx)^{1/p} \qquad \qquad \|f^{*} - f\|_{\infty} := \sup \|f^{*}(x) - f(x)\|_{\infty}$

• Neural networks are universal approximators if

For any continuous f^* , for any $\varepsilon > 0$, there exists a neural network f such that

distance (target f^* , NN f) $\leq \varepsilon$

• Popular distances:

 $L^{p} \text{ distance} \qquad \qquad \text{Uniform distance} \\ \|f^{*} - f\|_{p} := (\int \|f^{*}(x) - f(x)\|_{p}^{p} dx)^{1/p} \qquad \qquad \|f^{*} - f\|_{\infty} := \sup \|f^{*}(x) - f(x)\|_{\infty} \\$

• Classical Results [Cybenko, 1989; Pinkus, 1999]:

Two-layer NNs are universal approximators for both L^p and uniform distances I.e., the exact minimum depth for universal approximation is two

• Neural networks are universal approximators if

What is the minimum width for universal approximation?

• Classical Results [Cybenko, 1989; Pinkus, 1999]:

Two-layer NNs are universal approximators for both L^p and uniform distances I.e., the exact minimum depth for universal approximation is two

Minimum Width for Universal Approximation

• The exact minimum width is only known for L^p distance and a few problem setups so far [Lu et al., 2017; Hanin & Sellke, 2017; Johnson, 2019; Kidger & Lyons, 2020; Park et al., 2021; Cai, 2023]

 d_x, d_y : input, output dimensions of the target function

Reference	Distance	Domain	Activation	Exact Minimum Width
Park et al., 2021	L^p	\mathbb{R}^{d_x}	ReLU	$w_{\min} = \max\{d_x + 1, d_y\}$
Cai, 2023	L^p	$[0,1]^{d_x}$	Leaky-ReLU	$w_{min} = max\{d_x, d_y, 2\}$

Minimum Width for Universal Approximation

• The exact minimum width is only known for L^p distance and a few problem setups so far [Lu et al., 2017; Hanin & Sellke, 2017; Johnson, 2019; Kidger & Lyons, 2020; Park et al., 2021; Cai, 2023]

 d_x, d_y : input, output dimensions of the target function

Reference	Distance	Domain	Activation	Exact Minimum Width
Park et al., 2021	L^p	\mathbb{R}^{d_x}	ReLU	$w_{\min} = \max\{d_x + 1, d_y\}$
Cai, 2023	L^p	$[0,1]^{d_x}$	Leaky-ReLU	$w_{min} = max\{d_x, d_y, 2\}$

• What is the minimum width for uniform distance?

Reference	Distance	Domain	Activation	Lower Bound
Park et al., 2021	Uniform	$[0,1]^{d_x}$	ReLU	$w_{\min} = 3 > \max\{d_x + 1, d_y\}$
Cai, 2023	Uniform	$[0,1]^{d_x}$	Leaky-ReLU	$w_{\min} = 3 > \max\{d_x + 1, d_y\}$

where $d_x = 1, d_y = 2$

Contribution

1. A smaller width is sufficient to universally approximate target function on compact domain in L^p distance

 d_x, d_y : input, output dimensions of the target function

Reference	Distance	Domain	Activation	Exact Minimum Width
Park et al., 2021	L^p	\mathbb{R}^{d_x}	ReLU	$w_{\min} = \max\{d_x + 1, d_y\}$

Ours	L^p	$[0,1]^{d_x}$	ReLU	$w_{min} = max\{d_x, d_y, 2\}$
------	-------	---------------	------	--------------------------------

Contribution

1. A smaller width is sufficient to universally approximate target function on compact domain in L^p distance

 d_x, d_y : input, output dimensions of the target function

Reference	Distance	Domain	Activation	Exact Minimum Width
Park et al., 2021	L^p	\mathbb{R}^{d_x}	ReLU	$w_{\min} = \max\{d_x + 1, d_y\}$

Ours L^p	$[0,1]^{d_x}$	ReLU	$w_{\min} = \max\{d_x, d_y, 2\}$
------------	---------------	------	----------------------------------

Can we generalize to other activation functions?

Contribution

- 1. A smaller width is sufficient to universally approximate target function on compact domain in L^p distance
- 2. The exact minimum width for ReLU networks also holds for ReLU-Like networks

 d_x, d_y : input, output dimensions of the target function

Reference Distance Domain	Activation	Exact Minimum Width
----------------------------------	------------	---------------------

Cai, 2023	L^p	$[0,1]^{d_x}$	Leaky-ReLU	$w_{min} = max\{d_x, d_y, 2\}$
-----------	-------	---------------	------------	--------------------------------

Ours	L^p	$[0,1]^{d_x}$	ReLU-Like	$w_{min} = max\{d_x, d_y, 2\}$
------	-------	---------------	-----------	--------------------------------

ReLU-Like: Softplus, Leaky-ReLU, ELU, CELU, SELU, GELU, SiLU, and Mish

Contribution

- 1. A smaller width is sufficient to universally approximate target function on compact domain in L^p distance
- 2. The exact minimum width for ReLU networks also holds for ReLU-Like networks
- 3. Extends the pervious lower bounds to continuous monotone activation functions and general input/output dimensions

Reference	Distance	Domain	Activation	Lower Bound
Park et al., 2021	Uniform	$[0,1]^{d_x}$	ReLU	$w_{\min} = 3 > \max\{d_x + 1, d_y\}$
Cai, 2023	Uniform	$[0,1]^{d_x}$	Leaky-ReLU	$w_{\min} = 3 > \max\{d_x + 1, d_y\}$
Ours	Uniform	$[0,1]^{d_x}$	Conti. monotone	$w_{min} \geq d_y + 1_{d_x < d_y \leq 2d_x}$

 d_x, d_y : input, output dimensions of the target function

Summary

1. Exact minimum width in L^p distance

Reference	Distance	Domain	Activation	Exact Minimum Width
Park et al., 2021	L^p	\mathbb{R}^{d_x}	ReLU	$w_{\min} = \max\{d_x + 1, d_y\}$
Cai, 2023	L^p	$[0,1]^{d_x}$	Leaky-ReLU	$w_{min} = max\{d_x, d_y, 2\}$
Ours	L^p	$[0,1]^{d_x}$	ReLU	$w_{min} = max\{d_x, d_y, 2\}$
Ours	L^p	$[0,1]^{d_x}$	ReLU-Like	$w_{min} = max\{d_x, d_y, 2\}$

2. Lower bound on minimum width in uniform distance

Reference	Distance	Domain	Activation	Lower Bound
Park et al., 2021	Uniform	$[0,1]^{d_x}$	ReLU	$w_{min} = 3 > \max\{d_x + 1, d_y\}$
Cai, 2023	Uniform	$[0,1]^{d_x}$	Leaky-ReLU	$w_{min} = 3 > \max\{d_x + 1, d_y\}$
Ours	Uniform	$[0,1]^{d_x}$	Conti. monotone	$w_{min} \ge d_y + 1_{d_x < d_y \le 2d_x}$

Summary

1. Exact minimum width in L^p distance

Reference	Distance	Domain	Activation	Exact Minimum Width
Park et al., 2021	L^p	\mathbb{R}^{d_x}	ReLU	$w_{\min} = \max\{d_x + 1, d_y\}$
Cai, 2023	L^p	$[0,1]^{d_x}$	Leaky-ReLU	$w_{min} = max\{d_x, d_y, 2\}$
Ours	L^p	$[0,1]^{d_x}$	ReLU	$w_{min} = max\{d_x, d_y, 2\}$
Ours	L^p	$[0,1]^{d_x}$	ReLU-Like	$w_{min} = max\{d_x, d_y, 2\}$

2. Lower bound on minimum width in uniform distance

Reference	Distance	Domain	Activation	Lower Bound
Park et al., 2021	Uniform	$[0,1]^{d_x}$	ReLU	$w_{min} = 3 > \max\{d_x + 1, d_y\}$
Cai, 2023	Uniform	$[0,1]^{d_x}$	Leaky-ReLU	$w_{min} = 3 > \max\{d_x + 1, d_y\}$
Ours	Uniform	$[0,1]^{d_x}$	Conti. monotone	$w_{min} \ge d_y + 1_{d_x < d_y \le 2d_x}$

- Idea: A piecewise constant function can approximate continuous function within an arbitrary error in L^p distance
- Consider a partition of the domain and then map input vectors in most part of each partition to approximate target vector

Illustration : $d_x = 2$ and the number of partitions is 4

- Idea: A piecewise constant function can approximate continuous function within an arbitrary error in L^p distance
- Consider a partition of the domain and then map input vectors in most part of each partition to approximate target vector

Illustration : $d_x = 2$ and the number of partitions is 4

- Idea: A piecewise constant function can approximate continuous function within an arbitrary error in L^p distance
- Consider a partition of the domain and then map input vectors in most part of each partition to approximate target vector

- Idea: A piecewise constant function can approximate continuous function within an arbitrary error in L^p distance
- Consider a partition of the domain and then map input vectors in most part of each partition to approximate target vector

width $\max\{d_y, 2\}$ ReLU network

- Idea: A piecewise constant function can approximate continuous function within an arbitrary error in L^p distance
- Consider a partition of the domain and then map input vectors in most part of each partition to approximate target vector

ReLU networks of width $\max\{d_x, d_y, 2\}$ are universal approximations in L^p distance

- Idea: A piecewise constant function can approximate continuous function within an arbitrary error in L^p distance
- Consider a partition of the domain and then map input vectors in most part of each partition to approximate target vector

Also, width $\max\{d_x, d_y, 2\}$ networks using ReLU-Like activation functoins are universal approximations in L^p distance

Summary

1. Exact minimum width in L^p distance

Reference	Distance	Domain	Activation	Exact Minimum Width
Park et al., 2021	L^p	\mathbb{R}^{d_x}	ReLU	$w_{\min} = \max\{d_x + 1, d_y\}$
Cai, 2023	L^p	$[0,1]^{d_x}$	Leaky-ReLU	$w_{min} = max\{d_x, d_y, 2\}$
Ours	L^p	$[0,1]^{d_x}$	ReLU	$w_{min} = max\{d_x, d_y, 2\}$
Ours	L^p	$[0,1]^{d_x}$	ReLU-Like	$w_{min} = max\{d_x, d_y, 2\}$

2. Lower bound on minimum width in uniform distance

Reference	Distance	Domain	Activation	Lower Bound
Park et al., 2021	Uniform	$[0,1]^{d_x}$	ReLU	$w_{min} = 3 > \max\{d_x + 1, d_y\}$
Cai, 2023	Uniform	$[0,1]^{d_x}$	Leaky-ReLU	$w_{\min} = 3 > \max\{d_x + 1, d_y\}$
Ours	Uniform	$[0,1]^{d_x}$	Conti. monotone	$w_{min} \ge d_y + 1_{d_x < d_y \le 2d_x}$

Proof Sketch: Lower Bound

Our choice of target function f^*

Illustration : $d_x = 2$ and $d_y = 3$

Proof Sketch: Lower Bound

Fact: Networks using continuous monotone activation function can be approximated by networks
using continuous injection activation function in uniform distance

Proof Sketch: Lower Bound

- Fact: Networks using continuous monotone activation function can be approximated by networks using continuous injection activation function in uniform distance
- However, width d_y continuous injection networks, which can uniformly approximate f^* in small uniform error, must have an intersection.

- We first prove that the minimum width of networks on compact domain using RELU or RELU-LIKE activation function is exactly $\max\{d_x, d_y, 2\}$
- We improve the previous lower bound on the minimum width for universal approximation in uniform distance: general activation functions & input/output dimensions

For more details and additional results, read our paper and come to our poster session!

Wed 8 May 10:45am @ Halle B